AA - Section 3.3 - Solving Inequalities **Using Multiplication and Division**

Objective: To use multiplication and division to solve inequalities.

Essential Understanding: Just as we used the multiplication and division to solve equations; you can use multiplication and division to solve inequalities.

Multiplication Property of Inequality:

Let a, b, and c be real numbers with c > 0.

If a > b, then ac > bc.

If a < b, then ac < bc

Let a, b, and c be real numbers with c < 0.

If a > b, then ac < bc. If a < b, then ac > bc.

***Anytime you multiply or divide by a negative number, you flip (or reverse) the inequality sign.

Examples -

Solve the inequalities and graph the solution.

$$1. \ \ \mathsf{l} \cdot \frac{x}{6} < 1 \cdot \mathsf{l} \cdot \mathsf{l}$$

XLLe

$$2. - \frac{x}{4} > -1 - \frac{y}{4}$$

$$3. - |\cdot - x| < -\frac{1}{2} \cdot - |\cdot - x|$$

$$x > \frac{1}{2}$$

4.
$$\frac{3}{2} - \frac{4}{9} < \frac{2}{3} \times \frac{3}{2}$$

$$-\frac{2}{3} < x$$

$$X > \frac{2}{3}$$

Division Property of Inequality:

Let a, b, and c be real numbers with c > 0.

If
$$a > b$$
, then $\frac{a}{c} > \frac{b}{c}$.

If
$$a > b$$
, then $\frac{a}{c} > \frac{b}{c}$. If $a < b$, then $\frac{a}{c} < \frac{b}{c}$.

Let a, b, and c be real numbers with c < 0.

If
$$a > b$$
, then $\frac{a}{c} < \frac{b}{c}$. If $a < b$, then $\frac{a}{c} > \frac{b}{c}$.

If a < b, then
$$\frac{a}{c} > \frac{b}{c}$$

***Anytime you multiply or divide by a negative number, you flip (or reverse) the inequality sign.

Examples -

Solve the inequalities and graph the solution.

5.
$$-3x \ge 12$$

6.
$$\frac{20}{-4} > \frac{4x}{-4}$$

-5 > x
x \ 2-5

7.
$$-\frac{16}{3} \le \frac{2x}{3}$$
$$-8 \le x$$
$$x \ge -8$$

8.
$$\frac{-0.2x}{-.2} < \frac{0.6}{-.2}$$

 $x > 3$

Write and solve an inequality.

A student club plans to buy food for a soup kitchen. A case of vegetables costs 9. \$10.68. The club can spend at most \$50 for the project. What are the possible numbers of cases the club can buy?

The club can buy at most 4 cases of vegetables.